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ABSTRACT 
This paper studies digital ink artifacts students produced in 
the classroom and how instructors could use these artifacts 
in support of classroom instruction.  Currently, instructor 
use of student-produced artifacts is limited by the cognitive 
load of real-time review and analysis during class.  The 
goal of the study is to evaluate, in the context of a 
TabletPC-based classroom interaction system, whether 
clustering techniques have the potential to assist instructors 
in this task.  We examine student ink artifacts to determine 
whether they could be naturally grouped into categories that 
instructors find useful when discussing student work.  We 
establish that grouping student artifacts plays a major role 
in how instructors use them in class, and that the artifacts 
often have an underlying grouping structure.  This paper 
looks at the complexity of algorithms for grouping and also 
identifies several challenges that arise in analyzing student 
artifacts. 
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INTRODUCTION 
Mobile computing and wireless networks are transforming 
many activities by allowing instantaneous transfer of rich 
data between users.  Our domain of interest is the higher 
education classroom.  By increasing the communication 
bandwidth in the classroom, we seek to improve the educa-
tional experience by:  

• Making instructors more aware of the level of under-
standing of their students; 

• Lowering the barriers to contributing so that all stu-
dents can participate; 

• Integrating student work into classroom discussions to 
promote peer learning. 

Our approach is to deploy pen-based computers in the 
classroom, and use them to enable students to send digital 
ink artifacts to the instructor at specific times during the 
lecture.  The idea is that the instructor quickly reviews these 
as they arrive during class – for instance, to determine the 
students’ level of understanding – and then displays some 
of the student contributions to the class for further discus-
sion.  This raises the concern of overloading the instructor 
with data.  One possible solution is to use ink recognition 
and clustering of student artifacts to make this data easier 
for the instructor to work with.  Although such automatic 
techniques sound promising, prior to investigating them 
further, we conducted a background study to assess the ap-
plicability of these techniques to the types of data and ac-
tivities we have collected from real classes.  
Classroom Technology 
Our goal in deploying technology in the classroom is to 
increase the level of interaction between the students and 
the instructor. There is a vast educational literature that 
addresses the difficulties of engaging students with the tra-
ditional university lecture [9, 27].  Common themes for 
addressing these difficulties include introducing student 

 



  

 

 

activities [10, 15] and giving the instructor feedback on 
student learning [7]. 

There is broad interest in using technology to improve the 
classroom experience.  The idea behind much of the work 
on classroom technology has been to use technology to en-
hance or offload certain activities, so that students and in-
structors can be more effective in the classroom.  Opportu-
nities for this include capturing the classroom experience to 
reduce note taking demands [1, 21], improving presentation 
tools for the instructor [5], and creating new communica-
tion channels for student-student [17] and student-instructor 
[12, 23] communication. 

Our Approach 
To support our goals, we have developed Classroom Pre-
senter [5, 26] – a distributed Tablet PC-based classroom 
interaction system.  The system supports sharing of digital 
ink written on electronic slides.  Using a digital pen, the 
instructor writes on top of a slide on a Tablet PC and the 
ink appears simultaneously on a public display.  This allows 
the system to be used as a presentation tool that provides 
dynamicity to traditional PowerPoint-style lectures by ena-
bling ink augmentation of slides.  Classroom Presenter also 
supports sharing of information with student devices: the 
students’ slides can be synchronized with the instructor’s 
slides and receive the instructor’s ink in real time.  Students 
can also write on slides and send the result back to the in-
structor anonymously.  We refer to this as the student sub-
mission scenario.  The instructor can then choose to show 
some of the submissions on a public display. 

Student submissions are central to the pedagogy we are 
developing around the use of interacting devices.  The in-
structor develops a slide-based lecture and includes a num-
ber of activities on the lecture slides.  When the instructor 
reaches an activity slide, students write their answers on the 
slide with digital ink, and send the slide and ink back to the 
instructor.  The instructor can then review the submissions 
and selectively show some on the public display.  This al-
lows the instructor to bring in a diversity of ideas, show 
novel solutions, and discuss misconceptions arising from 
student answers.  The use of a public display creates a focus 
of attention and provides a mechanism whereby student 
work can be integrated into the lecture discussion1 – one of 
the most powerful aspects of the student submission proc-
ess. 

To make the workflow more concrete, Figure 1 shows the 
instructor interface, with the current slide, a filmstrip for 
slide navigation on the left, and ink controls across the top.  

                                                           
1 The student work appears on the public display anony-
mously.  The current implementation of the system shows 
the name of the machine that a submission came from on 
the instructor’s view of the submitted slides. 

At the start of the lecture, students receive the slides on 
their machines.  Figure 2 shows one student’s view after the 
student has responded to the given question.  The student 
sends the answer back to the instructor with an explicit ac-
tion.  Figure 3 shows the instructor view after student sub-
missions have been received.  The filmstrip now contains 
the answers submitted by the students.  The instructor can 
preview the submissions by scrolling the filmstrip, and also 

 
Figure 1. Instructor view, showing an exercise for students to 
work on. 

 
Figure 2. Student view after the student has completed the exer-
cise. 

 
Figure 3. Instructor view after student responses have been re-
ceived.  Student submissions are in the film strip, while the se-
lected slide shows in the main panel too. 
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through a preview window.  When the instructor selects one 
of the submissions from the filmstrip, it shows on the main 
panel of the interface, and also on the public display. 

Benefits of Ink-Based Input 
Classroom Presenter targets the Tablet PC platform.  Using 
a pen-based device in a classroom environment brings sig-
nificant advantages.  Digital ink provides flexibility of ex-
pression that allows a wide range of “constructional” activi-
ties which would not be possible with “clicker” or key-
board-based devices.  Pen-based input allows students to 
draw diagrams, use symbolic notations, and annotate on top 
of existing content.  The naturalness of the act of writing 
also encourages useful “side channels” of student input.  
We have seen students use ink to display their initial stages 
of thought, to elaborate on an answer, and to express their 
personalities through handwriting and drawings.  The rich 
expressiveness of ink is at the core of Classroom Presenter, 
yet using ink also creates challenges in recognition and 
analysis that are a theme of this paper. 

Related Work 
There are a number of other projects exploring the use of 
student devices in the classroom to support interaction.  In 
terms of technology, the LiveNotes project [17] has taken a 
similar approach to Classroom Presenter by sharing ink and 
slides between Tablet PCs.  However LiveNotes aims at a 
different scenario – that of supporting student group com-
munication in the classroom.  ActiveClass is a project 
where students use PDAs to deliver asynchronous feedback 
to the instructor [23].  Although not the focus of this paper, 
we have also investigated asynchronous feedback on slides 
in our Classroom Feedback System [6].  Many systems for 
distance or web-based education incorporate various polling 
and feedback facilities [14].  There has been a substantial 
amount of work studying the use of Classroom Response 
Systems [12, 20], which we discuss below. 

The most mature work on supporting classroom pedagogy 
with mobile devices is the work on Classroom Networks 
[24, 25].  A classroom network consists of a collection of 
student devices which communicate with an instructor ma-
chine connected to a public display.  The public display is 
used to show aggregated data coming from the student de-
vices.  Pedagogies such as Peer Instruction [20] have shown 
impressive gains in student achievement through use of 
such classroom networks.  The key to successful use of a 
classroom network is to design instruction around activities 
that can then be discussed in the context of the displayed 
information [16].  Classroom networks to date have gener-
ally relied on discrete devices such as “clickers” [12] which 
support multiple choice questions and polling.  Our work 
contrasts by providing a richer mechanism for student ex-
pression, and relying on the use of non-aggregated data.  As 
a result, the types of activities supported by Classroom Pre-
senter and Classroom Networks are very different and in-
deed complementary. 

BASIC QUESTION 
The successful use of this technology in the classroom de-
pends both on the design of appropriate activities and on the 
instructor’s ability to work effectively with student submis-
sions.  Instructors in our study have found analyzing student 
responses in “real-time” during lecture to be surprisingly 
challenging in some instances – even in classes with only 
10-20 student devices.  Often the majority of responses are 
submitted simultaneously and towards the end of the activ-
ity.  Instructors are then under pressure to quickly deter-
mine overall class understanding and plan which individual 
submissions to display in order to make the desired points.  
A standard concern often raised is whether the instructor 
can cope with a large number of submissions as the system 
scales to larger deployments.  Based on our experience the 
scaling issue is indeed a very real problem.  We have seen 
comprehension issues arise in classes with 10-20 student 
devices and increase as more devices are added. 

Direct evidence of the challenge of understanding submis-
sions comes from comparing instructors’ impressions dur-
ing the class period with a careful post-class review of the 
submissions.  In an evaluation of activities (described in a 
later section), instructors often commented that analyzing 
results in real time was more cognitively difficult than they 
had anticipated. There were frequent cases where instruc-
tors perceived a fairly different ratio of correct to incorrect 
answers from what the reality was, even when it was easy 
to quickly judge the correctness of individual answers.  In 
addition to their inability to see the “big picture,” instruc-
tors had trouble honing in on interesting details.  Creative 
or otherwise outlying solutions often went unnoticed, 
prompting a reaction of “I wish I had seen that example” 
from the instructor during the post-class review.  In other 
cases instructors struggled to locate an example of a spe-
cific type of answer they wanted to display to illustrate a 
particular (prepared) point.  

There are obvious improvements to the user interface that 
could assist the instructor in working with student submis-
sions.  The current instructor interface (shown in Figure 3) 
shows submissions in a one-dimensional scrollable film-
strip.  One idea for improvement is to dedicate the entire 
screen area (at least momentarily) for a two-dimensional 
view of student submissions.  This would both increase the 
number of submissions that could be realistically viewed 
and allow improved organization of the displayed responses 
via the added dimension.  Figure 4 shows an example of 
how submissions might appear when they are organized by 
the shape of the inked solution.  For this sort of grouping to 
be useful to instructors during lecture, it would be necessary 
to have algorithmic methods for automatically computing 
the groups.  There is a very large space of available ap-
proaches to recognition and grouping, and vast previous 
work to build on.  Specific issues to consider include rec-
ognition technologies [2, 13, 22], algorithms for clustering 
[19], mechanisms for guiding group construction, handling 
of specific domains [3, 18], and techniques for visualizing 



  

 

 

the results [8].  Our hypothesis is that the key to developing 
a user interface that supports the effective use of student 
submissions in large classes is grouping submissions in a 
way that brings together submissions with the same mean-
ing, or ones that could be used to illustrate the same point. 
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Figure 4. Grouping of student submissions in a two-dimensional 
grid with rows showing individual groups.  In this activity, stu-
dents were asked to draw a menu with equal access times for items 
according to Fitts’ law predictions.  Row D shows the type of 
answers the instructor was expecting. 

This paper is about our investigation of the hypothesis that 
grouping has a central role in working with student submis-
sions.  We do this without attempting to implement any 
specific recognition and clustering algorithms.  There are 
several reasons why we chose to investigate this problem 
before prototyping and evaluating specific such algorithms: 

• The number of algorithms available for clustering and 
recognition is very large, so a better understanding of 
use could guide the choice of algorithms. 

• The recognition problems are technically challenging, 
so prototype results could easily emphasize the quality 
of our implementations, and not illuminate the more 
interesting question of whether the general approach 
enhances the instructor’s comprehension.  At the same 
time, negative results could be attributed to not having 
good enough recognizers, rather than to a possible 
shortcoming of the approach. 

• Because of the challenges of producing good recog-
nizers, prototypes would have to be aimed at fairly 
narrow domains, which might not be broad enough to 
support a convincing evaluation in a real educational 
setting. 

• It is possible that grouping does not play the key role 
that we hypothesize it does.  If so, this would not be 
exposed by an implementation-based study. 

The underlying question we investigate is whether it is pos-
sible to automatically group student submissions in a way 
that they are useful for the instructor.  We break this ques-
tion into three components – whether instructors actually 
depend on grouping, whether real data (i.e., student arti-
facts) has a grouping structure, and how hard it would be to 
compute useful groupings.  Our analysis follows from falsi-
fying the hypothesis and considering the main reasons why 
automatic grouping might not be useful in working with 
student submissions.  First of all, it is possible that instruc-
tors do not rely heavily on constructing groupings of sub-
missions, in which case grouping may not help.  It is also 
possible that the type of data received from students does 
not exhibit a useful group structure – even if the instructor 
is looking for one.  The final concern is that the algorithmic 
complexity of finding desired groupings may be too great 
so it is not feasible to compute them.  In subsequent sec-
tions we examine these three aspects of grouping in light of 
actual classroom data. 

FRAMEWORK OF THE STUDY 
We have been piloting the system in several junior and sen-
ior level Computer Science courses at our institution on an 
experimental basis since December 2004.  The courses 
were Data Structures, Software Engineering, Digital De-
sign, and HCI.  The purpose of these deployments has been 
to explore uses of the technology and the associated peda-
gogy it affords.  The main classroom experience discussed 
in this paper comes from four instructors who have used the 
system in six different course offerings for a total of 28 
class sessions. In these deployments the instructor lectured 
from a Tablet PC, connected to a public display, while all 
students could see and annotate the lecture slides on Tablet 
PCs on their desks.  We usually had about 20 HP TC1100 
Tablet PCs deployed in the classroom, communicating over 
an ad hoc or infrastructure-based wireless network.  In 
courses larger than 20 students, we had students share de-
vices.  In addition to the courses discussed here, we have 
occasionally deployed the system in other courses and in 
numerous non-classroom demonstrations.  In total, over 
1100 student submission artifacts were collected from 87 
different submission activities. 

Our study centered on artifacts collected in the classroom2.  
Collecting the student submissions was an easy process, 
since the system allowed saving submissions from the in-
                                                           
2 For this paper, we only consider submissions collected 
from actual college classes.  We have a large amount of 
data from demos too, but since the demo environment is 
very different from a classroom, we do not include activi-
ties from it here. 
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structor machine.  This preserved all submissions made by 
the students (although it did not retain information on 
which students they came from or the timing of the submis-
sions).  The dataset was then cleaned by erasing ink drawn 
by the instructor on the submission and removing duplicate 
student submissions.  A few activities were used in multiple 
course offerings; they were combined into single activities 
for the purposes of our study.  This yielded a total of 87 
activities.  From this set, we selected 36 for more careful 
analysis.  This subset was chosen to be representative of the 
courses included in our study and of the different types of 
activities in the full set (including ones that required textual 
responses and ones that asked for sketching diagrams).  
Later sections describe our analysis of the activities. 

The data was obtained through real classroom usage during 
a time when the instructors were developing and refining 
the methodology of teaching with students submissions.  
The data was collected before we decided to conduct this 
study.  Although there are ways to design activities to fa-
cilitate the automatic analysis of the resulting artifacts – for 
instance, by making it easy to identify individual answers to 
questions – the activities discussed here were not designed 
with that goal in mind, and consequently introduced addi-
tional challenges for the analysis. 

Across all instructors involved and all different courses 
taught, we have seen considerable variation in the types of 
activities used and the types of responses received from the 
students.  The most successful activities were well thought 
out to fit into the lecture and designed so that the range of 
likely answers could be easily understood by the instructor 
when he or she received them. 

Overall, students responded very positively to the system.  
In one of the courses surveyed 43 out of 44 students 
thought the system had a positive effect on their learning 
experience.  40 out of 44 students felt that seeing other stu-
dent solutions had a positive effect on their learning experi-
ence, although 20 of these students admitted that they 
would only have volunteered to show their answers to the 
class less than half the time if ever.  In other courses stu-
dents made observations such as “it gives equal voice to the 
quiet person and the one that talks a lot” and “The best 
thing about this system is it encourages the students to actu-
ally work on the problem . . . Knowing that my solution 
will appear on screen but will also remain anonymous en-
courages me to participate but at the same time reduces the 
worry of getting it wrong.” 

INSTRUCTORS’ VIEW OF GROUPING 
We started our investigation by examining the role that 
grouping plays for instructors who use student submissions.  
If grouping was not significant for them, it would not be 
worth pursuing methods to automatically group the data.  
Intuitively, it seems that grouping of student answers could 
be useful for the instructor – anyone who has graded 
homework recognizes that evaluating answers can often be 
done very quickly by placing similar answers together into 

bins.  The higher education instructional literature also sup-
ports the idea that grouping is important in analyzing stu-
dents’ work.  Angelo and Cross’s text on Classroom As-
sessment Techniques (CATs) [7] is one that has greatly 
influenced our thinking on student submissions.   Through-
out their work they stress the role of breaking the student 
responses into groups, with suggestions such as: 

Student responses to this type of CAT can be quickly 
sorted into three piles: correct/complete (or “on-
target”) responses, somewhat correct/complete (or 
“close”) responses, and incorrect/incomplete (“off-
target”) responses.  Then the number of responses in 
each pile can be counted, and the approximate percent-
age of the total class each represents can be calculated.  
Teachers also can look for particularly revealing or 
thoughtful responses among the on- and off-target 
groups. [p. 30] 

The basis of our study of instructor requirements was an in 
depth analysis of activities previously used in class. For 
each of the 36 activities studied, we asked the original in-
structor a set of questions in order to understand what their 
goals were for the activity, how they made use of student 
responses in class, and whether grouping responses would 
have helped them in this use. 

For 33 of the 36 activities instructors indicated that having 
student responses placed into groups would have been use-
ful during lecture, especially if the activity was used in a 
large class.  This result held across a wide variety of activi-
ties and uses of student submissions.  The preferred types of 
groups depended on the instructor’s goals for the specific 
activity.  For activities whose goal was to assess student 
understanding or point out misconceptions, groups such as 
“Correct”, “Partially Correct”, and “Incorrect” were often 
desired.  For activities meant to generate a variety of arti-
facts of interest, the desired groupings resulted from parti-
tioning by particular features (e.g., by shape: “linear”, 
“star”, “binary tree”; by coding approach: “recursive”, “it-
erative”, “other”; etc.).  The maximum number of groups an 
instructor deemed useful for any one activity was 5 with 3 
groups being most commonly considered an optimal num-
ber. 

Instructors often described their use of student submissions 
during class in terms of displaying submissions from sev-
eral different categories.  One instructor noted: “I planned 
to show examples of the different types – and draw any 
additional examples that were necessary.”  Among the 
presentation strategies used, instructors were almost evenly 
split between planning on displaying only one solution (of-
ten a correct one), displaying several partially incorrect 
ones, culminating in showing a correct one, and displaying 
one solution from each expected type.  One instructor em-
ployed the strategy of displaying every student submission, 
which was possible in smaller classes where no more than 
15 Tablet PCs were used.  Even this instructor agreed that 



  

 

 

for most of his activities, grouping would be useful in larger 
classes and deployments.   

Based on the instructors’ responses, we feel the evidence is 
strong that grouping could play a major role in how student 
submissions are used in the classroom.   

DOES THE DATA FORM GROUPS? 
In the previous section we argued that in many cases in-
structors looked for a grouping structure among student 
submissions.  The next logical question is whether such an 
underlying grouping structure exists in the data. 

To test this, we had six individuals participate as sorters and 
later analyzed how similar the groupings they produced 
were overall, as well as how similar they were to the origi-
nal instructor’s preferred grouping.  All sorters had a Com-
puter Science background and were familiar with the sub-
ject matter of the courses used in the study.  Their task was 
to sort a collection of artifacts into groups in a manner that 
would be useful for an instructor.  We did not specify ahead 
of time how the groups should be constructed or what the 
number of groups should be, so each sorter used the criteria 
they deemed best for the activities at hand. 

Our decision to have humans do the sorting for this part of 
the study was motivated by the desire to sidestep the tech-
nicalities associated with handwriting and diagram recogni-
tion until a time when addressing such details would be 
more appropriate.  Also, since humans have the ability to 
see the high-level semantic meaning behind an artifact – 
something an automated algorithm is unlikely to be able to 
infer – if humans failed to discern any useful group struc-
ture, automated algorithms would have little chance of suc-
cess too. 

Each of the 36 activities was sorted by three to five people.  
We used the edit distance metric [11] to evaluate the simi-
larity between pairs of sorts.  In the context of this study, 
the edit distance between two given sorts is the minimal 
number of student artifacts that would need to be moved 
between groups in order to convert one of the sorts into the 
other.  Therefore, a low edit distance corresponds to a high 
degree of similarity between two sorts.  Table 1 shows the 
results for a set of representative activities.  For each activ-
ity, the table displays the average of the edit distances from 
the activity’s original instructor to each sorter, as well as 
the average of the edit distances taken across all pairs of 
sorters (including the activity’s original instructor).  The 
edit distance is also shown as a percentage of the total 
number of artifacts submitted for that activity.  The activi-
ties were taken from courses in Human Computer Interac-
tion (HCI), Data Structures (DS), and Software Engineering 
(SE).  The types of activities are diagram/tree/graph sketch-
ing (D), English text writing (T), or coding (C).   

 

Activity Course Type Average edit distance 
to instructor sort 

Average edit dis-
tance across all sorts 

EqAccess HCI D 1.4 (10%) 1.7 (12%) 

FindCode DS C 1.0 (10%) 1.4 (14%) 

BehindWriteIn SE T 2.8 (13%) 3.1 (15%) 

ComGraph SE D 3.4 (17%) 3.7 (19%) 

HuffmanTree DS D 4.5 (21%) 4.9 (23%) 

FailReason SE T 18.6 (42%) 18.5 (42%) 

Table 1. Activities and Edit Distances.  The edit distances are 
expressed both as the absolute number of edits, and as a percent-
age of the total submissions for the activity 

The results show, at least for some activities, significant 
similarities between groupings done by different sorters.  
This suggests that it is promising to look for algorithms to 
compute such groupings.  In the next section we discuss in 
more detail each of these particular activities, along with 
the corresponding results from the table. 

AUTOMATIC GROUPING 
The final part of our study assesses the prospects for auto-
matic grouping of student submissions by examining data 
collected from the classroom.  Our method could be called 
“backwards analysis”; we analyze the student submissions 
to determine what type of algorithms could have been able 
to construct the types of groupings that were found by the 
human sorters.  The goal of this analysis is to gain insight 
into how hard it would be to construct algorithms that 
would find groupings for certain classes of student submis-
sions by looking at specific instances.  This analysis can 
illuminate specific difficulties arising for student submis-
sions and can provide evidence about the overall difficulty 
of the grouping problem. 

It is widely known that there are many challenges in ink 
recognition, and that recognition becomes more challenging 
in informal domains [4].  While handwriting recognition is 
now relatively good, there are major challenges in diagram 
recognition [2, 18] and mathematical expression recogni-
tion.  We observed student submissions that demonstrated 
challenges common to other informal domains such as 
sloppy handwriting, stroke segmentation difficulties, and 
multiple drawn strokes. 

In the following subsections we examine in detail the po-
tential for creating automatic grouping algorithms for stu-
dent activities.  We discuss specific examples of activities 
whose answers were expressed as code, text or diagrams, 
and illuminate possible approaches and potential difficul-
ties.  

Code  
The FindCode activity (shown in ) asked students to write 
code to traverse a tree from a node to the root.  This  



UW CSE TR# 2006-10-02. 

Department of Computer Science and Engineering,  University of Washington 

 

       

     

Figure 5. Code written by students to traverse a tree from a node 
to the root in the FindCode activity.  (A) shows a recursive solu-
tions, (B) is an incorrect for-loop solution, and (C) and (D) show 
two iterative solutions. 

 

activity was used to make a tie between data structures and 
implementation, and to allow the instructor to make the 
point that code for this operation can be very concise.  In 
class, the instructor was surprised by the division of the 
submissions into groups: six were recursive, three were 
iterative, and one was an incorrect solution.  This was an 
unanticipated grouping of the data (the instructor had only 
expected iterative solutions).  During class it was easy for 
the instructor to distinguish between recursive and iterative 
solutions, but not to keep track of the percentage of each 
type or to notice the one incorrect solution. The instructor’s 
preferred groupings were very close to the other sorters’ 
groupings, with an average edit distance of 1, showing that, 
on the average, only a single submission was categorized 
differently.   

 

In general, automatic analysis of handwritten code is a very 
difficult problem. Static analysis of code is a deep problem 
in software engineering, and there is also a hard recognition 
problem in going from handwritten code to text.  The ex-
amples in  show a number of syntactic irregularities which 
would make recognition more difficult.  Despite the diffi-
culty of the general problem, there is a simple heuristic al-
gorithm which would have found the desired clustering in 
this case.  Each of the groups could be easily identified by 
keywords.  The algorithm would first recognize the pro-
gramming language and then cluster based on the presence 
or absence of certain keywords.  The recursive group could 
be identified by “if-else”, the iterative group by “while” and 
the incorrect group by “for”.  The significance of this ex-
ample is that it shows that there are cases where simple 
heuristics give the same results as a clustering based on a 
deeper understanding.  Further investigation is needed to 
determine how broad this phenomenon is.  

Text 
There is a broad class of activities where the answers are 
expressed in short phrases or sentences of text.  Approxi-
mately 30 percent of the activities in our collection re-
quested free-form textual answers.  Instructors generally 
wanted a grouping “by the same meaning”, although occa-
sionally had a fixed collection of semantic categories.  The 
number of groups found by instructors was generally sig-
nificantly higher than for diagrammatic activities.  The 
planned classroom usage was also different – aiming to 
show a greater number of answers, covering the range of 
available responses.  The edit distances were higher for the 
manual clustering of textual submissions than for other 
types of activities.  Average edit distances were as high as 
40 percent.  The edit distance measure is generally sensitive 
to increasing the number of groups, but this does show that 
there was substantial variation in how individuals sorted the 
data.  Some submissions were consistently grouped to-
gether, but some outliers were ambiguous in meaning and 
therefore sorted differently.  Sorts of the activity FailRea-
son (not shown here) had an edit distance of 42%, indicat-
ing high variation among sorters.  However, the instructor 
commented that the groupings generated by other sorters 
were “surprisingly useful,” despite the fact that they dif-
fered significantly from his own sort.  Thus, there may be 
value in generating automatic groupings even when there is 
no clear agreement on the ideal sort. 

In BehindWriteIn, the instructor in a software engineering 
class asked students what the options were if a company fell 
behind on their schedule.  Answers received included “hire 
more people”, “bring in consultants”, “move estimate 
back”, “drop low priority features”, and “work harder.”  
The answers mostly consisted of short phrases.  Although 
many algorithms already exist to cluster textual documents, 
including much of the work motivated by web searching 
[28], we were concerned that the shortness of the text in a 
student submission and the comparatively small sample size 
would limit the applicability of these algorithms to our do-
main.  A very simple approach we examined was to first 
remove extraneous “stop words” and then begin combining 
elements into groups which either shared words or shared 
equivalent words.  This algorithm might fail to bring to-
gether answers such as “hire more people” and “bring in 
consultants” if there was not a sufficient overlap to have 
them merged into the same group.  (In our hand simula-
tions, these two did end up in the same group, because the 
answer “bring more people onto team” overlapped with 
both.)  This particular activity was one of the small text-
based activities in our collection, with only 21 total submis-
sions, each composed of no more than a single sentence.  
Yes, this was still an adequate amount of text to use for 
grouping.  There were a handful of submissions that had no 
words in common with others, but that was the exception 
rather than the rule.  Hand simulation of this algorithm pro-
duced results which were comparable in terms of edit dis-
tance to the groups produced by human sorters.  In retro-



  

 

 

spect, this initial experiment with text clustering produced 
much more positive results than we had anticipated. 

Diagrams 
The HuffmanTree tree activity (shown in Figure 6) was 
used in a Data Structures course to evaluate whether or not 
students understood the standard algorithm for building 
Huffman trees.  After the algorithm was introduced and the 
students saw an example of building a Huffman tree, they 
were given an activity that asked them to build such a tree 
from a given set of weights.  The instructor planned to show 
several incorrect solutions to address misconceptions, fol-
lowed by a correct solution.  The desired grouping of solu-
tions was a fairly common pattern: Correct, Almost Correct, 
and Wrong.  The instructor’s sort of this activity was Cor-
rect (13), Almost Correct (3) and Wrong (4).  When the 
instructor did this activity in class, he had difficulty finding 
incorrect solutions to display.  The sorters matched the in-
structor’s groups quite well, with fairly close agreement on 
the Correct group.  The average edit distance for the sorts, 
as shown in Table 1, is 4.5.  The main contributor to this 
distance was the variety of ways sorters differentiated be-
tween almost correct and incorrect solutions. 

The natural approach to automatically grouping this algo-
rithm would be to apply a tree recognition algorithm, and 
then cluster on tree structure.  The correct solutions would 
all be put into the same group, since they would all have the 
same structure.  Based on the disagreements among the 
sorters on the incorrect solutions, it is unlikely the algo-
rithm would do well on the Almost Correct / Wrong distinc-
tion – but determining the percentage of Correct answers 
and separating them from the incorrect ones would have 
been sufficient for this instructor’s goals.  There has been a 
substantial amount of work on recognizing domains such as 
trees [3].  It is still a challenging engineering task to de-
velop a robust recognizer for such a domain that handles the 
natural variations in drawing.  Although a tree recognizer 
could be a basis for grouping this type of activity, we had 
the hope that there might be a simpler approach – just as in 
the FindCode problem we could group by keywords instead 
of by algorithm understanding.  Unfortunately, the simple 
approaches we looked at, such as clustering based on the 
number of edges, on the distribution of left and right edges, 
or on the length of the longest path, did not lead to useful 
groupings.  We could not find any structural properties, 
other than computing the full tree that would result in the 
right grouping.  Approaches based on looking at the 
weights on the nodes might work better, although in the 
data set we had, students had been very inconsistent in la-
beling nodes.  This example points to needing fairly sophis-
ticated recognizers in order to achieve decent results.  We 
believe it is also likely that the same result would hold for 
many domains in other disciplines, such as chemistry dia-
grams and circuit drawings, where high quality recognizers 
would be required and would achieve good results. 

  
Figure 6. Correct and incorrect solutions to the Huffman tree ac-
tivity. 

The ComGraph activity, shown in Figure 7 and Figure 8, 
was used in a Software Engineering class during a lecture 
discussing teams.  The students were asked to draw a graph 
of a team structure that has O(n) communication edges and 
allowed all team members to communicate.  The instructor 
planned to use the results of the activity to make the point 
that there could be long chains of communication and bot-
tlenecks in communication, but these could be avoided with 
a hierarchical communication structure.  The instructor 
hoped to find a line graph, a star graph, and a balanced tree 
in the student submissions to illustrate these individual 
points.  Thus, the instructor had a grouping structure in 
mind that covered the expected types of graphs.  The 
breakdown of solutions was line (1), ring (5), star (7), tree 
(4) and other (3).  In constructing a sort of the data after 
class, the instructor placed the line and the rings in the same 
group, because they could be used to make exactly the same 
pedagogical point: that there could be long communication 
distances between people with this structure.  Table 1 
shows that there was a fairly good agreement with the other 
sorters on this example – suggesting that the groups were 
well defined.  The main differences in the groupings were 
that all of the other sorters separated the line from the rings 
(using the structural property – not the intended use), and 
the different handling of the other solutions.   

Although ComGraph was similar to HuffmanTree, the data 
for ComGraph would be much more difficult to recognize.  
This is because it was a brainstorming exercise, where 
many students chose to augment their diagrams with writ-
ing or other art work.  This writing served several purposes 
– in some cases it was used to provide additional informa-
tion about the solution, and in others it was playful.  This 
type of creative expression can have a positive impact on 
the class by providing richer examples for discussion and 
by highlighting individual expression.  However, a recog-
nizer would need to be very sophisticated to correctly clas-
sify the graphs which used faces for nodes (Figure 8) or had 
textual explanations (also Figure 8).  Another technical 
challenge in this data is recognizing classes of graphs, and 
not instances of graphs, so for example, star graphs with 
different numbers of nodes should go in the same group, 
and it would also be necessary to recognize graphs with an 
indeterminate number of nodes. 
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Figure 7. A line graph and a ring graph drawn to illustrate com-
munication structures.  Note the stick figures used for graph 
nodes.  

  
Figure 8.  Two different star graphs which were placed by all 
sorters in the same group.  Challenges to automatically matching 
these include the different node shapes, the use of text explanation 
in a node label, and ellipses to indicate missing vertices. 

Limitations 
We now turn our attention to the examples where automatic 
grouping is not of interest, or does not appear to be feasible.  
In our examination of instructor requirements we deter-
mined that for 33 out of 36 activities, the instructors be-
lieved that grouping would be useful.  The three activities 
where grouping was not thought to be useful were ones 
where either the instructor did not plan to show the results, 
or the results would be shown to support an artifact discus-
sion.  In an artifact discussion examples are shown to the 
class and discussed in some depth.  Often there are many 
different points to be made from the examples, so they do 
not fall into any particular grouping structure.  Figure 9 
shows an example from a Digital Design class where the 
instructor displayed a variety of student work in order to 
describe key points that he looked for when grading home-
work.  Although this activity looks similar to many where 
grouping was useful, it was the instructor’s use of the activ-
ity that distinguishes it from the others. 

 
Figure 9. An activity designing state machines where the instruc-
tor did not rely on grouping in presenting answers. 

There are also cases where the recognition problems are 
likely to be too hard to expect useful groupings to be com-
putable, even if domain experts are capable of identifying 
the groups.  The examples from our set of activities that we 
would expect to be the most difficult to sort into groups 
have a number of features which combine to create a sig-
nificant challenge: a substantial amount of writing, in a 
difficult domain, several different modalities used to ex-
press answers (text, diagrams, and symbols), and free form 
two-dimensional expression.  It should be noted that these 
features also make these activities very hard to use in class 
(even if they could be sorted easily).  Figure 10 shows one 
of the most difficult examples from our set of 87 activities.  
In class, the instructor just picked one example, and at-
tempted to decipher it during the discussion.  Very few ac-
tivities showed this level of difficulty (maybe 3 others in 
our set), most likely because instructors recognized that 
they would be very difficult to use in class. 

   
Figure 10.  A geometric activity that was very difficult to analyze.  
The solution on the left gives the answer with symbols and dia-
grams, while the example on the right gives the answer in pseudo 
code. 

CONCLUSIONS  
This paper was motivated by an information overload prob-
lem: how an instructor may be able to integrate student 
work into discussions while delivering a lecture.  This prob-
lem arises in the use of a Tablet PC-based classroom inter-
action system, where students submit digital ink artifacts to 
the instructor, and the instructor can selectively show some 
of these artifacts on a public display.  We studied the feasi-
bility of automatically grouping student work to support the 
instructor’s use of student submissions in the classroom.  
The study was conducted by examining the collected stu-
dent artifacts from activities used in class and by getting 
detailed feedback on those activities from the original in-
structors.   

The results of our study are generally supportive of using 
automatic grouping of student submissions, although they 
do identify challenges that will arise as well.  Here is a 
summary of those results: 

• In the vast majority of cases, grouping was important 
for the instructor, both in planning for an activity and 
in working with student submissions. 

• Student artifacts generally exhibited a grouping struc-
ture that could be identified by humans familiar with 
the domain. 



  

 

 

• There is a broad range of challenges associated with 
the recognition of digital ink in this domain.  Some of 
the strengths that digital ink brings to the classroom 
also contribute to the difficulty of recognition. 

• There is a spectrum of difficulty of automatic group-
ing for different activities: 

o Groupings for some activities can be computed by 
using simple heuristics, even though the activities 
themselves may pertain to a difficult subject area. 

o It may be possible to get fairly good grouping re-
sults on text-based activities by building on existing 
text analysis work.  

o Domain-specific recognizers appear to be necessary 
for some types of activities, but will require sub-
stantial engineering efforts to build. 

o Diagrammatic activities allowing for creativity and 
individual expression may be very difficult to ana-
lyze automatically. 

o There are activities which are likely beyond the 
scope of automatic analysis, but these are also ones 
that are difficult to process manually. 
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